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The general conditions for heterogeneous equilibria, summarized in 
the ordinary phase rule, are only applicable to systems where the differ
ent phases present are not subdivided. An extension of the principles 
is necessary for the treatment of systems in which one of the phases is 
divided into separate portions. The purpose of this article is to consider 
the conditions necessary for equilibrium in such "divided systems." 

In deriving the phase rule in its familiar form, the only variables con
sidered are the pressure and temperature of the system (and the concen
trations in the different phases). In the following treatment, however, 
we shall consider the possibility that any number of variables besides 
pressure and temperature may affect the equilibrium. Moreover, we 
shall make no restrictions as to the equality throughout the system of 
the pressure or other variables, with the exception of temperature. We 
shall thus obtain a very general equilibrium rule. 

' Definition of Region.—A system in equilibrium may be divided for pur
poses of discussion into a number of separate regions, throughout each of 
which the properties of the matter are either uniform or are a continuous 
function of the (macroscopic) position. 

Definition of Phase.—In the case of the systems considered in the deriva
tion of the ordinary phase rule, the number of regions, r, is the same 
as the number of phases, p. In the case of divided systems, however, 
some of the regions will contain matter belonging to the same phase. 
Two regions will obviously contain matter of the same phase, when the 
two regions are identical in thermodynamic properties. Two regions 



308 RICHARD C. TOLMAN. 

which are not identical, however, will also be said to contain the same 
phase when a continuous isothermal change in the independent variables 
determining one of the systems will cause continuous change in its proper
ties until they become identical with those of the other systems. In 
general, this will be true when the two regions can be made identical by 
an isothermal change without the appearance of any surface of discon
tinuity within the regions.1 

Derivation of the Equilibrium Rule.—Let us consider a system in equi
librium made from c components.2 We shall be interested in the num
ber of separate regions, r, which can exist at equilibrium. The necessary 
condition for isothermal equilibrium is that any component shall have 
the same free energy3 in all the different regions of the system. In all 
we shall have cr free energies. Now the free energy of each component 
of a region can be stated as a function of the (c — i) concentrations which 
determin the composition of the region and of certain further variables 
which will be sufficient to complete the thermodynamic description of 
the region. Let v be just enough variables besides the concentrations 
to determin completely the free energy of each component in each region. 
We have, then, in all cr free energies, (c— i)r concentrations, and v fur
ther algebraic quantities between which certain algebraic relations will 
exist. Each of the cr free energies will be some function of the other 
variables which will give us cr equations, and at equilibrium we shall 
have c(r — i) further equations, since each component must have the 
same free energy in any one region as in the other (r •— i) regions. 

We have in all, then, cr + (c —• \)r + v algebraic quantities which 
are connected at equilibrium by cr + c(r — i) equations. Evidently 
we can arbitrarily specify but {cr + (c — i)r + v\ — {cr + c(r — i)( 
variables if the system is to be in equilibrium. In other words, the 
number of degrees of freedom is 

/ = c — r + v. (i) 
1 Changes in the total mass of the regions or in the concentrations of their components 

may be necessary to make them identical and such changes are of course permissible. 
The introduction of new substances into the system, however, is, of course, not per
missible. 

2 The term component has the same meaning as in the usual applications of the 
phase rule. "As components of a system there are to be chosen the smallest number 
of independently variable constituents by means of which the composition of each 
phase participating in the state of equilibrium can be expressed in the form of a chemical 
equation." (Findlay, "The Phase Rule," 1904, p. 12.) For a discussion of the term 
see Roozeboom, Z. physik. Chew,., 15, 150 (1894); Wegscheider, Ibid., 43, 89 (1903). 

3 By the free energy of a component we shall mean the partial free energy per 
unit mass of the component. For a definition of the term partial free energy per unit 
mass, see for example Lewis, T H I S JOURNAL, 35, 1 (1913). Throughout the discussion, 
instead of free energy, we might have used, the fugacity, activity, thermodynamic 
potential or any other measure of the isothermal escaping tendency. 
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For undivided systems where the number of regions, r, is identical 
with the number of phases, p, and the only variables permitted are two 
(the pressure on the whole system and the temperature), the above equa
tion reduces to the familiar phase rule 

/ = c — p + 2. 
Negligible Variables.—Since the thermodynamic properties of matter 

are to some degree affected by an enormous number of variables, such 
as intensity of illumination, strength of magnetic field, etc., we might 
be at a loss in applying our equilibrium rule, equation (1), to know how 
many variables, v, really have to be considered. In actual practice, how
ever, such a difficulty seldom arises, since if is evident from the nature 
of our derivation that we only need to consider those variables upon which 
the thermodynamic properties of our different regions are appreciably 
dependent. 

For example, we are often interested in the possibility of adjusting the 
value of some variable so as to bring a given region into equilibrium 
with the rest of the system. If the variable in question, however, is one 
on which thermodynamic properties are not appreciably dependent, 
for example, the intensity of illumination, it is evident that such adjust
ment is in general not possible if the values of the other variables con
cerned throw the free energies of the region appreciably out. Thus by 
negligible variables we mean those whose possible changes produce but 
small variation in free energy compared with the other variables determin
ing the system. 

Divided Systems with Identical Regions.—As a special case of divided 
systems, we find those containing regions which have identical properties. 
For these systems it is possible to derive a simplified form of the equi
librium rule. 

If we have a system in equilibrium, it would seem as though a new 
region identical in properties with one of those already present could 
be introduced without disturbing the equilibrium or changing the number 
of degrees of freedom of the system, unless the free energies should be 
appreciably dependent on the total number of such identical regions 
present or what we call the "concentration of regions." Hence we might 
expect that r in our equilibrium rule (1) could be taken as the number 
of unduplicated regions, if at the same time we discard any of the v vari
ables whose specifications are merely necessary for determining the free 
energies in the duplicatory regions, and also keep in mind that the "con
centration of regions" of any species may also be a variable that has to 
be considered. As a matter of fact a simplified form of the equilibrium 
rule applicable to this particular case can be derived as follows: 

Consider a system containing in all (r + r{) regions, where each of the 
ri regions is thermodynamically identical with some one of the other 
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r regions. The necessary condition for isothermal equilibrium is that the 
free energy of each component in any region shall be the same as in all 
other regions. In all we shall have c(r + r4) free energies where c is the 
number of components. The free energy of each component of a region 
can be stated as a function of the (c — i) concentrations which determin 
the composition of the region and of certain further variables which com
plete the thermodynamic description of the region. I^et v be just enough 
variables besides the concentrations to determin completely the free en
ergies of the r non-identical regions, and vi be any variables used for the 
thermodynamic description of the ri duplicatory regions. We have 
in all, then, c(r + r{) free energies, (c — i) (r + r{) concentrations, and 
(v + V1) further quantities between which certain algebraic relations 
will exist. Each of the (c — i)r i concentrations in the ri duplicatory 
regions will be equal to a concentration in some one of the r non-identical 
regions, each of the vi variables which are used for determining the free 
energies in the r4 duplicatory regions will be equal to one of the v variables 
which determin the free energies in the r non-identical regions, each of 
the c(r -f r j free energies will be some function of the other variables, 
and at equilibrium we shall have c(r + r{ — i) further equations, since 
each component must have the same free energy in any one region as in 
the other (r + ri— i) regions. Of these latter equations, however, 
cri are not independent, since the equality of the free energies in the ri 

duplicatory regions could evidently be predicted beforehand from the 
above mentioned (c — i)r4 + vt + c{r + rt) relations. In all we shall 
have c(r + r j + (c— i)(r + rt) + (v + vt) algebraic quantities which 
are connected at equilibrium by (c — i)ri + vt + c(r + rt) + c(r —- i) 
independent equations. Hence the number of degrees of freedom will be 

/ = c(r + r.) 4- (c — i)(r -f rt) + (v + vt) 

— {(c — i)rt + vi + c (r + T1) + c (r — i) j 
/ = c — r + v. (2) 

In this simplified equilibrium rule, which very interestingly has the 
same form as the general equilibrium rule (1), r is the number of non-
identical regions, and v is the least number of variables whose specification, 
together with the concentrations in the various regions, will permit a 
complete thermodynamic description of each of the non-identical regions. 
It is obvious that among these v variables may be the "concentration of 
identical regions" of any species. In fact, in the case of very highly dis
persed systems we find that free energies are sometimes appreciably de
pendent on the "concentration of dispersoid." 

In case the total number of regions present is too small for the free 
energy of any region to depend on the "concentration of regions," we may 
state the simple principle that the equilibrium and number of degrees of 
freedom in a divided system is the same as though the duplicate regions 
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were all removed. An evident illustration of this principle is the fact 
that with a number of vessels of water under a bell jar we have the same 
equilibrium as with one vessel of water. 

In the case of divided systems in which the only division of phases is 
into identical regions, it is to be specially noted that the number of non-
identical regions, r, is the same as the number of phases, p, and the equi
librium rule takes the form, 

f = c — p + v. 
We shall refer to this fact in a subsequent article in which dispersed sys
tems are discussed. 

Divided Systems Containing Non-Identical Regions.—We may now con
sider as another case of divided systems those which have non-identical 
regions containing the same phase. For these certain special relations 
can also be derived. 

Consider, for example, a one-component system, into which we intro
duce a region containing the same phase as some region already present, 
but not identical with that region. If the regions should differ in the 
value of only one variable, it is evident from our definition of phase that 
by a continuous change in this variable the properties of the two regions 
could be made identical. Hence if the two regions do differ in the value of 
only one independent variable, for example, the pressure, it is obvious 
that the free energy of the two regions cannot be the same and they cannot 
both exist at equilibrium.1 Equilibrium in a one-component system can 
only exist when non-identical regions containing the same phase differ 
in the value of at least two independent variables.2 

For example, consider two vessels of water under a bell jar in contact 
with water vapor. Let the water in one vessel, however, be under a 
higher pressure than in the other, making use, for example, of a piston 
permeable to vapor. Equilibrium cannot exist. The water under the 
higher pressure has the' greater free energy and will distil over into the 
other vessel. Equilibrium can be attained, however, if we introduce 
a difference in the value of another variable which describes the two 
regions. For example, their difference in height. By lowering the vessel 
which is under pressure the free energy of the water can be decreased 
to the same value as that in the open vessel, and equilibrium attained. 

For a two-component system the free energy of each component in any 
region must be the same as in any other region. Take now a region which 
differs from some other region, filled with material belonging to the same-
phase, in the value of one variable; to give to the free energy of botk 

1 The tacit assumption is made that the free energy is an unambiguous function, 
of the variable. 

2 Regions not containing the same phase can differ in the value of only ome varia
ble and be in equilibrium. 
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components the same value as in the second region we shall have to vary 
at least two more variables. Hence, in a two-component divided system 
any region to be in equilibrium must either be identical with all other 
regions containing the same phase, or differ in the values of at least three 
variables. 

in general, with a system made from c components, a region can exist 
in equilibrium only when it is identical with some other region or differs 
in the value of at least (c + i) variables. Of these (c + i) variables, (c — i) 
may be the concentrations whose specification determins the composi
tion of the region. Hence we may state as our general rule that a region 
can exist at equilibrium only if it differs from all other regions filled with 
material belonging to the same phase in the value of at least two variables 
besides the concentrations. We shall find applications of this principle 
in a treatment of colloids. 

We may apply our equilibrium rule f — c — r + v to the analysis of 
systems containing non-identical regions of the same phase. Consider 
a system of c components composed of rd regions, containing different 
phases, and described by vd variables. The number of degrees of freedom 
will be 

/ = c — rd + vd. 
Let us now introduce, without destroying the equilibrium, rs new, non-
identical regions which contain the same phases as some of the rd regions 
already present. Let vs be the number of added variables necessary for 
the description of these new regions. If the number of added regions is 
small enough so that the free energies are independent of the concentra
tion of regions the number of degrees of freedom will be 

/ = c — {rd + rs) + (vd + vs). 
It is evident from our previous discussion that vs must be at least as 
great as 2 Tj if we are to have equilibrium. In the simple case that vs — 
2 r t the equilibrium rule becomes 

/ = c — rd + vd + rs. 
Thus for each added non-identical region, containing one of the same 
phases already present, the number of degrees of freedom is increased 
by at least one, if equilibrium is maintained. This increase in the number 
of degrees of freedom is due of course to the fact that for each new region 
introduced, at least two new variables have to be introduced. As to the 
nature of these added degrees of freedom, however, an important dis
tinction must be made. Since the rs added regions in no way increase 
the stability of the rd regions already present, it is evident that the added 
degrees of freedom will only permit the arbitrary specification of some of 
the r (c — i) concentrations or vs new variables which determin the free 
energies in the newly added r regions. 
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As an example of the above principles let us consider a two-component 
system consisting of an open beaker containing a mixture of alcohol and 
water in equilibrium with the mixed vapor. Let us now introduce a new 
region containing a liquid mixture of alcohol and water of a different 
composition. The new region can exist in equilibrium With the liquid 
one already present only when it differs in the value of at least two other 
variables than the concentration. We can make these, for example, the 
height of the new region above the open beaker and the pressure on the 
new mixture, applied, for example, by a porous piston which is permeable 
to the vapor. Applying our equilibrium rule 

/ = c — r + v, 
we shall have in all two components, three regions, and the four variables, 
temperature, pressure of the vapor (which is identical with the pressure 
on the open beaker), height, and pressure of the new liquid region. The 
number of degrees of freedom will be 

/ = 2 — 3 + 4 = 3-
Applying our principles, however, it is evident that of the three variables 
which can be arbitrarily specified at equilibrium one must belong to the 
newly introduced region. For example, if we specify the temperature 
and concentration in each of the liquid regions, all the other variables, 
the pressure of the vapor, the height of the newly introduced region, 
and the pressure on it are all determined if equilibrium is to exist. 

Permanent Systems not in Equilibrium.—'The mere fact that a system 
is apparently stable must not be taken as conclusive proof that equilibrium 
has been attained. A further examination of the system must be made, 
first, to see if the different parts of the supposed system really come into 
contact with each other in such a way as to permit those transferences 
of matter which are necessary for the attainment of equilibrium, and, sec
ond, to see if slow changes in the direction of equilibrium may not actually 
be in progress. 

As a concrete illustration of the first of these points, let us again consider 
two vessels of water under a bell jar in contact with the vapor of the liquid. 
If the water in the two vessels is under different pressures we should not 
expect equilibrium, but should expect the distillation of the water under 
higher pressure into the vessel of- lower pressure. If, however, the pistons 
which produce these pressures are not sensibly permeable to water vapor 
the system may be in a perfectly stable state. In other words, in the 
delimitation of our system from its surroundings we must include only 
such regions as permit a transference of matter. 

As an illustration of the necessity of further examination to determin 
if slow changes towards a state of equilibrium are not actually in progress, 
we might consider two open vessels of liquid under a bell jar in contact 
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with the vapor of the liquid. If the vessels are at different levels we 
should not expect equilibrium, but should expect the liquid to distil 
from the higher vessel into the lower. If, however, the liquid is very 
involatil the rate of distillation might be so slow as to make the state of 
the system apparently stable. 

Interesting cases also arise when some of the components of a region 
are involatil (or insoluble in neighboring regions) while others come readily 
into equilibrium with the rest of the system. Under such circumstances 
it is evident that a perfectly stable state is possible without having the 
free energy of these involatil components the same throughout the whole 
system. As a matter of fact, if we have a system containing c components 
one of which is of such an involatil or insoluble nature that its total 
amount can be arbitrarily fixed in a regions or sets of regions, and another 
whose amount can be arbitrarily fixed in b regions or sets of regions, 
etc., it can be shown1 that the total number of degrees of freedom in the 
quasi-equilibrium state will be given by the equation 

/ = c — r + v 4~ (a — i) — (b —- i), etc. (3) 
For example, consider two vessels containing salt solutions of different 

concentration in equilibrium with the vapor.3 Since the salt is so involatil 
that it will not readily pass from one vessel to the other, its free energy 
does not have to be the same throughout the whole system and the amount 
in the two vessels can be arbitrarily specified. If now we consider as varia
bles the temperature, pressure (of the vapor), and difference in the level 
of the two vessels, we have3 

/ = c — r -1- v + (a — 1) 
= 2 — 3 + 3 + (2 — 1) = 3, 

1 This can be seen from a consideration of the method by which the general equilib
rium rule, equation (1), was derived. As a condition for equilibrium was taken the 
necessity that the free energy of each component in each of (r — 1) regions should be 
the same as that in the one remaining region. This gave us c(r — .1) equations which 
had to be satisfied at equilibrium. In the case of the quasi-equilibrium, -however, 
the total amount of one particular component, and hence its free energy, can be ar
bitrarily specified in each of a sets of regions into which the system can be divided. 
Now there will be (a — 1) sets of regions which do not contain the one particular region 
designated in our original derivation, and in each of these (a — 1) sets there will be one 
region in which we may arbitrarily specify the free energy of the component in question. 
Hence the number of equations which have to be satisfied at equilibrium is reduced by 
(a — 1) and the number of degrees of freedom increased by the same amount. Similar 
considerations hold for a further component, whose total amount can be specified in 
each of b sets of regions. 

2 -My attention was called by Professor Lewis to this interesting system which 
does not accord with the general equilibrium rule, equation (1), because it is not in 
I rue equilibrium. 

3 a is taken as 2 since (he gas space is obviously not a region in which the total 
amount of salt can be arbitrarily fixed. 
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and, indeed, if we specify the temperature of the system and the concen
tration of salt in the two vessels, the difference in level between them and 
the pressure of the vapor of the system are completely determined. 

Metastable, Stable, and indifferent Equilibria.—In the case of divided 
systems it is often desirable to distinguish between metastable, stable, 
and indifferent equilibria, and these terms will have their familiar signifi
cance. For example, we sometimes find a system which is in equilibrium, 
but of such a nature that the accidental disappearance of matter from 
one of the regions is necessarily accompanied by an increase in the free 
energies of the' components in that region, which results, of course, a 
fortiori, in the further disappearance of matter from that region. Such 
regions where the accidental loss of material results in the loss of the whole 
region may be called metastable. 

As a trivial illustration of metastable equilibria we might consider 
a balance with vessels containing equal weights of water on the two pans, 
the whole under a bell jar in equilibrium with water vapor. A slight 
evaporation of water from one of the vessels will cause the balance to go 
up on that side, thus increasing the free energy of the water on that side, 
and equilibrium will not again be attained until all the water has distilled 
out the upper vessel and condensed in the lower. 

By stable regions, on the other hand, we shall mean those in which the 
disappearance of matter is accompanied by a decrease in the free energies 
of the region. For example, consider a number of vessels of water in 
equilibrium with water vapor, the same pressure being applied to the water 
in the different vessels by means of springs which press down on pistons 
permeable to the vapor. This system will be in stable equilibrium. 
If water evaporates from one of the vessels the piston sinks, the spring 
is less compressed, the pressure decreased, and the free energy of that 
region is lessened so that water will now distil back into that vessel, thus 
maintaining a permanent state. 

Intermediate between stable and metastable regions are those in which 
the disappearance of matter is unaccompanied by any change in the free 
energies of the components of the region. Such regions may be called 
indifferent. . For example, if the pressure on the pistons in the preceding 
illustration were produced by weights, the free energies of the liquid 
regions would be independent of the amount of the region present, and 
an accidental decrease in the amount of liquid in one of the regions would 
be followed neither by the disappearance of the whole region nor by a 
condensation which would bring the region back to its original size. 

Application of the Principles.—The principles of equilibria considered 
in this article are not only of theoretical interest as a legitimate extension 
of the phase rule, but may be applied in the consideration of the various 
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divided systems which occur in nature. Moreover, as a particular case 
of divided systems, we may consider the dispersed systems including the 
colloids in which the degree of subdivision of one of the phases, the dis-
persoid, has become so high that the thermodynamic properties of the 
system are appreciably dependent on the size or number of the regions. 
A description of dispersed systems from a thermodynamic point of view 
and an application of the principles of equilibria found for divided systems. 
is the subject of a following paper. 

Summary.—In the foregoing article the general principles of isothermal 
equilibria in divided systems have been considered, and a generalized 
equilibrium rule obtained of which the phase rule is a special case. 

A divided system may be defined as a heterogeneous system in which, 
at least one of the phases is present in more than one region, regions being 
divided from the rest of the system by boundary surfaces where an abrupt 
change of properties takes place. 

The number of degrees of freedom in a divided system is given by the 
equation 

f = c — r -f v 

where c is the number of components, r the number of regions, and v 
the least number of variables whose specification, together with the com
positions, is necessary for the thermodynamic description of each of the 
regions. No restriction was made as to the number or nature of the 
variables. 

For systems containing thermodynamically identical regions, r may 
be taken as the number of non-duplicated regions, and v the number of 
variables necessary for the thermodynamic description of these non-
duplicated regions. For the case that the only division is into thermo
dynamically identical regions the equilibrium rule assumes the form 

/ = c — p + v 

where p is the number of phases. 
A special analysis was made of the equilibrium in systems containing. 

non-identical regions of the same phase, which showed that such regions, 
must differ from each other in the value of at least two variables besides 
concentrations, that each new such region, put into an equilibrium system, 
introduces at least one new degree of freedom, and that the degrees of 
freedom thus introduced are not identical with those which the system 
already possessed. 

Discussions were given of the conditions under which variables may 
be neglected, of the conditions in permanent systems which are not in 
equilibrium, and of metastable, stable, and indifferent equilibria. 

The principles developed will find application in a classification of dis
persed systems including the colloids. 


